作业帮 > 数学 > 作业

已知实数abc满足√(a^2-3a+2)+|b+1|+(c+3)^2=0,求方程ax^2+bx+c=0的根

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 18:09:50
已知实数abc满足√(a^2-3a+2)+|b+1|+(c+3)^2=0,求方程ax^2+bx+c=0的根
已知实数abc满足√(a^2-3a+2)+|b+1|+(c+3)^2=0,求方程ax^2+bx+c=0的根
由于√(a²-3a+2)≥0,|b+1|≥0,(c+3)²≥0,
而这三部分相加的和是零,于是只能有:
a²-3a+2=b+1=c+3=0,
解得a=1或a=2,b=﹣1,c=﹣3.
》若a=1,那么方程ax²+bx+c=0化为x²-x-3=0,
判别式△=(-1)²-4(-3)=13>0,
方程的根为x=(1±√13)/2.
》若a=2,那么方程化为2x²-x-3=0,
判别式△=(-1)²-4×2×(-3)=25>0
方程的根为x=(1±√25)/4,也就是x=﹣1或x=3/2.