∫(0,10π)[(sinx)^3]/[2(sinx)^2+(cosx)^4]dx
∫(0,10π)[(sinx)^3]/[2(sinx)^2+(cosx)^4]dx
=∫(0,π/4)(cosx-sinx)dx+∫(π/4,π/2)(sinx-cosx)dx
∫【0到π/2】(sinx^10-cosx^10)dx/(5-sinx-cosx)
赶快∫【-π,π】[sinx/(x^2+cosx)]dx和∫【-π/4,-π/3】(sinx+cosx)dx求解
∫(sinx+cosx)^2 dx
∫(sinx)^2/(cosx)^3 dx
∫(sinx)^3/(2+cosx)dx
∫(0,π/2)(-sinx+cosx)/(sinx+cosx)dx 请用换元法求出定积分
∫(cosx)^2/(cosx-sinx)dx
证明:积分符号sinx/(sinx+cosx)dx=积分符号cosx/(sinx+cosx)dx在[0,π/2]相等 加
∫(2sinx+cosx)/(sinx+2cosx)dx
积分0~2π (sinx)^3*e^cosx dx