一道数学题:已知数列an的前n项和为sn,满足an+2sns(n-1)=0(n≥2,n为正整数),a1=1/2
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/17 06:58:40
一道数学题:已知数列an的前n项和为sn,满足an+2sns(n-1)=0(n≥2,n为正整数),a1=1/2
1,求sn,an,的表达式 2.若bn=2(1-n)an(n≥2,n为正整数),求证,b2^2+b3^2+.+bn^2<2/3
1,求sn,an,的表达式 2.若bn=2(1-n)an(n≥2,n为正整数),求证,b2^2+b3^2+.+bn^2<2/3
(1)an+2sns(n-1)=0,an=sn-s(n-1)
化为1/sn-1/s(n-1)=2
数列1/sn为等差数列.公差d=2,s1=a1=1/2,有1/s1=2,所以1/sn=(n-1)*d+1/s1=2n
sn=1/(2n)
an=sn-s(n-1)=1/[2n(1-n)]
(2)bn=2(1-n)an=2(1-n)/[2n(1-n)]=1/n,
b2^2+b3^2+.+bn^2
=(1/2)^2+(1/3)^2+.+(1/n)^2
化为1/sn-1/s(n-1)=2
数列1/sn为等差数列.公差d=2,s1=a1=1/2,有1/s1=2,所以1/sn=(n-1)*d+1/s1=2n
sn=1/(2n)
an=sn-s(n-1)=1/[2n(1-n)]
(2)bn=2(1-n)an=2(1-n)/[2n(1-n)]=1/n,
b2^2+b3^2+.+bn^2
=(1/2)^2+(1/3)^2+.+(1/n)^2
一道数学题:已知数列an的前n项和为sn,满足an+2sns(n-1)=0(n≥2,n为正整数),a1=1/2
已知数列an的前n项和为Sn,且满足 a1=1/2,An=-2SnS(n-1) n>=2 ①求证1
(1/2)已知数列{an}的前n项和为Sn,且满足a1=1/2,an+2SnS(n-1)=0 (n>=2,n属于N) (
已知数列an的前n项和为Sn,且a1=1,Sn-S(n-1)=2SnS(n-1)
已知数列an的前n项和为Sn,且满足an+2Sn·S(n-1)=0(n≥2),a1=1.5
已知数列{an}的前n项和为Sn,且满足Sn=2an-1,n为正整数,求数列{an}的通项公式an
已知数列{an}的前n项和为Sn,且满足an+2Sn+Sn-1=0(n≥2),a1+1/2
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n属于正整数),求数列{an}的通项公式an
数列{an}的前n项和为Sn,a1=1,an+1=2Sn (n∈正整数)
已知数列an的前n项和为Sn,且满足an+SnSn-1=0(n>=2,n∈N*),a1=1/2.
已知数列{An},Sn是其前n项和,且满足3An=2Sn+n,n为正整数,求证数列{An+1/2}为等比数列
已知数列an的前n项和为sn,且满足sn=n²an-n²(n-1),a1=1/2