已知点P、Q是椭圆x^2/9+y^2/4=1上的点,O为坐标原点∠POQ=90°,求1/op^2+1/OQ^2的值
已知点P、Q是椭圆x^2/9+y^2/4=1上的点,O为坐标原点∠POQ=90°,求1/op^2+1/OQ^2的值
已知点P.Q是椭圆x^2/ a^2+y^2/ b^2=1上的点,O为坐标原点,角POQ=90度.求1/OP^2+1/OQ
证明与找错已知P,Q是椭圆9x^2+16y^2=1上的两个动点,O为坐标原点,若OP⊥OQ,则点O到弦PQ的距离是多少?
已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与该椭圆相交于点P和Q,且OP⊥OQ,|PQ|=√10/2,求
椭圆X^2/16+Y^2/4=1上有两点P、Q,O是原点,若OP、OQ斜率之积为-1/4,求|OP|^2+|OQ|^2的
椭圆的证明问题已知椭圆x^2 /16+y^2 /4=1上有2定点p,q,o为原点,连接op,oq若k op*k oq=-
椭圆x ^ 2/16+y ^ 2/4=1上有两点P,Q,O为坐标原点,连结OP,OQ,若Kop*kOQ=-1/4,
已知x^2/25+y^2/16=1,o为坐标原点,点P在椭圆上运动,求OP的中点M的轨迹方程
已知直线y=-2上有一个动点Q,过点Q作直线l 1 垂直于x轴,动点P在l 1 上,且满足OP⊥OQ(O为坐标原点),记
已知椭圆x^2/a^2+y^2/b^2=1上有两点P,Q,O为坐标原点,设直线OP,OQ的斜率分别为
已知直线2X+4Y+3=0,P为直线上的动点,O是坐标原点,点Q分向量OP为1/2两部分,求Q方程
已知椭圆x^2 /16 + y^2 /4 = 1 上有两个定点P,Q,O为原点,连结OP,OQ