求函数 ln(x+1)/(x4+x2+1) 从0到100(积分上下限)上定积分的值,高手帮下忙,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:51:32
求函数 ln(x+1)/(x4+x2+1) 从0到100(积分上下限)上定积分的值,高手帮下忙,
不要只语言叙述,最好能贴张图~这题困扰我好几天了,.
ln(x+1)整个是分子,我写的不严谨不好意思。
不要只语言叙述,最好能贴张图~这题困扰我好几天了,.
ln(x+1)整个是分子,我写的不严谨不好意思。
[0,100]∫ln[(x+1)/(x⁴+x²+1)]dx=[0,100][∫ln(x+1)dx-∫ln(x⁴+x²+1)dx].(1)
为简化书写过程我先把两个不定积分求出来:
∫ln(x+1)dx=∫ln(x+1)d(x+1)=(x+1)ln(x+1)-x.(2)
∫ln(x⁴+x²+1)dx=xln(x⁴+x²+1)-∫[x(4x³+2x)/(x⁴+x²+1)]dx
=xln(x⁴+x²+1)-∫[4-(2x²+4)/(x⁴+x²+1)]dx
=xln(x⁴+x²+1)-4x+2∫[(x²+2)/(x⁴+x²+1)]dx.(3)
其中∫[(x²+2)/(x⁴+x²+1)]dx=∫[(x²+1)/(x⁴+x²+1)]dx+∫[1/(x⁴+x²+1)]dx
=(1/√3)arctan[(x²-1)/(√3)x]+(1/4)ln[(x²+x+1)/(x²-x+1)]+(1/2√3)arctan[(x²-1)/(√3)x]
=(3/2√3)arctan[(x²-1)/(√3)x]+(1/4)ln[(x²+x+1)/(x²-x+1)],代入(3)式得:
∫ln(x⁴+x²+1)dx=xln(x⁴+x²+1)-4x+(3/√3)arctan[(x²-1)/(√3)x]+(1/2)ln[(x²+x+1)/(x²-x+1)].(4)
再将(2)和(4)代入(1)式即得:
[0,100]∫ln[(x+1)/(x⁴+x²+1)]dx
=[0,100]{(x+1)ln(x+1)-xln(x⁴+x²+1)+4x-(3/√3)arctan[(x²-1)/(√3)x]-(1/2)ln[(x²+x+1)/(x²-x+1)]}
=(101)ln(101)-100ln(100010001)+400-(3/√3)arctan(9999/100√3)
-(1/2)ln(100010001/99989999)-3π/(2√3)
你这题够烦人的!中间有两个积分把过程省去了,若写下来更不得了!
为简化书写过程我先把两个不定积分求出来:
∫ln(x+1)dx=∫ln(x+1)d(x+1)=(x+1)ln(x+1)-x.(2)
∫ln(x⁴+x²+1)dx=xln(x⁴+x²+1)-∫[x(4x³+2x)/(x⁴+x²+1)]dx
=xln(x⁴+x²+1)-∫[4-(2x²+4)/(x⁴+x²+1)]dx
=xln(x⁴+x²+1)-4x+2∫[(x²+2)/(x⁴+x²+1)]dx.(3)
其中∫[(x²+2)/(x⁴+x²+1)]dx=∫[(x²+1)/(x⁴+x²+1)]dx+∫[1/(x⁴+x²+1)]dx
=(1/√3)arctan[(x²-1)/(√3)x]+(1/4)ln[(x²+x+1)/(x²-x+1)]+(1/2√3)arctan[(x²-1)/(√3)x]
=(3/2√3)arctan[(x²-1)/(√3)x]+(1/4)ln[(x²+x+1)/(x²-x+1)],代入(3)式得:
∫ln(x⁴+x²+1)dx=xln(x⁴+x²+1)-4x+(3/√3)arctan[(x²-1)/(√3)x]+(1/2)ln[(x²+x+1)/(x²-x+1)].(4)
再将(2)和(4)代入(1)式即得:
[0,100]∫ln[(x+1)/(x⁴+x²+1)]dx
=[0,100]{(x+1)ln(x+1)-xln(x⁴+x²+1)+4x-(3/√3)arctan[(x²-1)/(√3)x]-(1/2)ln[(x²+x+1)/(x²-x+1)]}
=(101)ln(101)-100ln(100010001)+400-(3/√3)arctan(9999/100√3)
-(1/2)ln(100010001/99989999)-3π/(2√3)
你这题够烦人的!中间有两个积分把过程省去了,若写下来更不得了!
求函数 ln(x+1)/(x4+x2+1) 从0到100(积分上下限)上定积分的值,高手帮下忙,
求一个积分题目!ln(1+x)除以(1+x的平方) 积分上下限为1和0
求cos(t^2)的积分 其积分上下限为0到x
利用定义求定积分定积分号(积分下限0积分上限1)e^x dx
极限 定积分函数f(x)=x2在0到1上的定积分为1/3,可用微积分基本定理求,也能用定义求.定义求的原理是什么?
∫ln【x+√(x∧2+1))】dx在0到1上的定积分
求解定积分∫(上限1,下限0)ln(x+1)/(2-x)^2.dx
定积分(上下限1~0)(3x/1+x^2)dx
(1/lnx)dx 的定积分.省略积分上下限啊
求函数y+x/(1+x^2)在[0,1]上的定积分
求一个积分 ∫(2-x^2)^(3/2)dx 在0到1上的定积分
求解定积分∫(上限1,下限0)ln(x+1)/(2-x)^2.dx的解题过程,