作业帮 > 数学 > 作业

关于圆的标准方程以AB( A(x1,y1),B(x2,y2) )为直线的圆的方程为什么可以写成(x-x1)(x-x2)+

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:18:32
关于圆的标准方程
以AB( A(x1,y1),B(x2,y2) )为直线的圆的方程为什么可以写成(x-x1)(x-x2)+(y-y1)(y-y2)=0
直线--》直径
关于圆的标准方程以AB( A(x1,y1),B(x2,y2) )为直线的圆的方程为什么可以写成(x-x1)(x-x2)+
这可以用两种方法得到,
一是用向量(较为简单),设 P(x,y)是圆上任一点,则 AP丄BP ,
而 AP=(x-x1,y-y1),BP=(x-x2,y-y2),
所以由 AP*BP=0 得 (x-x1)(x-x2)+(y-y1)(y-y2)=0 ;
二是用圆的定义(比较麻烦),设 P(x,y)是圆上任一点,圆心即AB 中点为 M ,
则 M((x1+x2)/2 ,(y1+y2)/2),
则 |PM|=|AB|/2 ,
因此 |PM|^2=|AB|^2/4 ,
由两点间距离公式得 [x-(x1+x2)/2]^2+[y-(y1+y2)/2]^2=[(x2-x1)^2+(y2-y1)^2]/4 ,
两边同乘以 4 ,并把 2x-(x1+x2) 化为 (x-x1)+(x-x2) ,2y-(y1+y2) 化为 (y-y1)+(y-y2) ,
然后用完全平方公式展开,并移项得
2[(x-x1)(x-x2)+(y-y1)(y-y2)]=[(x2-x1)^2+(y2-y1)^2]-[(x-x1)^2+(y-y1)^2]-[(x-x2)^2+(y-y2)^2] ,
等式右端就是 |AB|^2-|PA|^2-|PB|^2 ,由勾股定理,它等于 0 ,
因此可得 (x-x1)(x-x2)+(y-y1)(y-y2)=0 .