(2014•张家口二模)已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 04:43:27
(2014•张家口二模)已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同学的作业:
甲:①连接OP,作OP的垂直平分线l,交OP于点A;
②以点A为圆心、OA为半径画弧、交⊙O于点M;
③作直线PM,则直线PM即为所求(如图1).
乙:①让直角三角板的一条直角边始终经过点P;
②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;
③作直线PM,则直线PM即为所求(如图2).
对于两人的作业,下列说法正确的是( )
A.甲对,乙不对
B.甲不对,乙对
C.两人都对
D.两人都不对
甲:①连接OP,作OP的垂直平分线l,交OP于点A;
②以点A为圆心、OA为半径画弧、交⊙O于点M;
③作直线PM,则直线PM即为所求(如图1).
乙:①让直角三角板的一条直角边始终经过点P;
②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;
③作直线PM,则直线PM即为所求(如图2).
对于两人的作业,下列说法正确的是( )
A.甲对,乙不对
B.甲不对,乙对
C.两人都对
D.两人都不对
证明:如图1连接OM,OA,
∵连接OP,作OP的垂直平分线l,交OP于点A;
∴OA=OP,
∵以点A为圆心、OA为半径画弧、交⊙O于点M;
∴OA=MA=OP,
∴∠O=∠AMO,∠AMP=∠MPA,
∴∠OMA+∠AMP=∠O+∠MPA=90°
∴OM⊥MP,
∴MP是⊙O的切线,
(2)如图2
∵直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,
∴∠OMP=90°,
∴MP是⊙O的切线.
故两位同学的作法都正确,
故选:C.
(2014•张家口二模)已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同
已知:⊙O的半径为3cm,点P和圆心O的距离为6cm,经过点P和⊙O的两条切线,求这两条切线的夹角及切线长.
已知圆O外一点P,用尺规过点P作圆O的切线
已知⊙O是以原点为圆心,√2为半径的圆,点P是直线y=-x+6上的一点,过P作⊙O的一条切线PQ,Q为切点,则切线长PQ
已知:⊙o的半径为3厘米,点p和圆心o的距离为3厘米,经过点p和⊙o的两条切线,求这两条切线的夹角及切线长
如图,已知点P是⊙O外一点,PS,PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A、B两点,并交ST于点C.
(2012•安庆一模)如图,过⊙O外一点P作⊙O的两条切线PA、PB,切点分别为A、B.下列结论中,正确的是______
(2008•株洲)如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC.
(2013•顺义区二模)已知:如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是⊙O外一点,PA切⊙O于点A,且
如图,AC是⊙O的直径,∠ACB=60°,连接AB,过A、B两点分别作⊙O的切线,两切线交于点P.若已知⊙O的半径为1,
数学几何 尺规做图已知圆O和圆O外的一点P,求作过P点的圆O的切线写出大概作法即可
尺规作图:已知圆O外一点P,过P点作圆O的两条切线PA、PB