为何矩阵在求特征向量时候不需正交化和单位化(除非题目要求),而将一个二次型转化为标准型,为何它的过渡矩阵必须是正交阵?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 07:43:20
为何矩阵在求特征向量时候不需正交化和单位化(除非题目要求),而将一个二次型转化为标准型,为何它的过渡矩阵必须是正交阵?
上面多打了几个字....重新写过...
为何矩阵在求特征向量时候不需正交化和单位化(除非题目要求),而将一个二次型转化为标准型时它的过渡矩阵必须是正交阵?
上面多打了几个字....重新写过...
为何矩阵在求特征向量时候不需正交化和单位化(除非题目要求),而将一个二次型转化为标准型时它的过渡矩阵必须是正交阵?
我之前回答过一个类似的问题,
对于你的问题特别说明两点:
1.既然对一般矩阵,属于不同特征值的特征向量之间未必正交,那么正交化和单位化也就没有什么意义,若勉强正交化,结果就不再是特征向量了;
2.对于二次型矩阵的化简,一般只要求合同对角化就够了,就是说,给定二次型矩阵 A ,只要找一个 可逆矩阵 P 使得 (P转) A P = D 是对角矩阵就行了,这里的 P 不见得必须是正交阵.但是既然实对称矩阵 A 可以正交相似对角化,我们当然也可以要求 P 为正交矩阵,选 P 为正交矩阵的一个优点是,它不会改变欧几里得空间中两点间的距离,从而在变换坐标时可以保持空间图形的形状不发生变化,而选择一般可逆矩阵 P就不一定能做到这一点了.
对于你的问题特别说明两点:
1.既然对一般矩阵,属于不同特征值的特征向量之间未必正交,那么正交化和单位化也就没有什么意义,若勉强正交化,结果就不再是特征向量了;
2.对于二次型矩阵的化简,一般只要求合同对角化就够了,就是说,给定二次型矩阵 A ,只要找一个 可逆矩阵 P 使得 (P转) A P = D 是对角矩阵就行了,这里的 P 不见得必须是正交阵.但是既然实对称矩阵 A 可以正交相似对角化,我们当然也可以要求 P 为正交矩阵,选 P 为正交矩阵的一个优点是,它不会改变欧几里得空间中两点间的距离,从而在变换坐标时可以保持空间图形的形状不发生变化,而选择一般可逆矩阵 P就不一定能做到这一点了.
为何矩阵在求特征向量时候不需正交化和单位化(除非题目要求),而将一个二次型转化为标准型,为何它的过渡矩阵必须是正交阵?
线性代数中,化二次型为标准型时,求所用的正交变换,有的题直接算出来的特征向量就是一个正交矩阵,有的则需要将特征向量组单位
求二次型 ,(1)写出二次型的矩阵A; (2)求一个正交变换化二次型为标准型;
化二次型为标准型求出原矩阵的特征值不就可以化为标准型了吗?为什么还要构造一个正交阵,也没用上啊?
刘老师您好,将二次型划为标准型的正交单位可逆矩阵是唯一的吗?
写出对称矩阵A 的二次型 并用正交变换将该二次型转化为标准型
化二次型为标准型时,求出了特征值与特征向量,特征向量是否必须正交化
实对称矩阵对应特征值的特征向量是正交的,那为何还要对其正交化?
用正交变换化下列二次型为标准型,并写出正交变换矩阵
在用正交变换化二次型为标准形时,为什么复习全书上会说求矩阵的特征值和特征向量之后当特征值不同时,...
为什么特征向量正交化并单位化后仍为原矩阵的特征向量?
用正交替换把二次型化标准型过程中求出的特征向量是先单位化还是先正交化?