已知向量a1,a2,a3为方程组AX=0向量的基础解系,试证明a1+a2,a2+a3,a3+a1也为该方程组的基础解系
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 19:08:49
已知向量a1,a2,a3为方程组AX=0向量的基础解系,试证明a1+a2,a2+a3,a3+a1也为该方程组的基础解系
a1为方程组AX=0向量的解
说明A*a1=0
同理A*a2=A*a3=0
所以A*(a1+a2)=A*a1+A*a2=0
所以a1+a2也为该方程组的解
同理a2+a3和a1+a3也为该方程组的解
但是并不是随便3个解都能组成基础解系,还要满足线性无关
我们已经知道矩阵(a1,a2,a3)是无关的,那么
(a1+a2,a2+a3,a3+a1)
=(a1,a2,a3)*
| 1 0 1 |
| 1 1 0 |
| 0 1 1 |
后面的矩阵不等于0,所以矩阵(a1+a2,a2+a3,a3+a1)也无关
所以a1+a2,a2+a3,a3+a1也为该方程组的基础解系
说明A*a1=0
同理A*a2=A*a3=0
所以A*(a1+a2)=A*a1+A*a2=0
所以a1+a2也为该方程组的解
同理a2+a3和a1+a3也为该方程组的解
但是并不是随便3个解都能组成基础解系,还要满足线性无关
我们已经知道矩阵(a1,a2,a3)是无关的,那么
(a1+a2,a2+a3,a3+a1)
=(a1,a2,a3)*
| 1 0 1 |
| 1 1 0 |
| 0 1 1 |
后面的矩阵不等于0,所以矩阵(a1+a2,a2+a3,a3+a1)也无关
所以a1+a2,a2+a3,a3+a1也为该方程组的基础解系
已知向量a1,a2,a3为方程组AX=0向量的基础解系,试证明a1+a2,a2+a3,a3+a1也为该方程组的基础解系
设a1.a2.a3是方程组AX=0的基础解系,向量组a1.a2.a3的秩为.
设a1,a2,a3是AX=0的基础解系,则该方程组的基础解系是否可以表示成a1,a2,a3的一个等价向量组?如何证明
设a1,a2,a3是AX=0的基础解系,则该方程组的基础解系是否可以表示成a1,a2,a3的一个等秩向量组?
一、已知a1,a2,a3,a4为线性方程组Ax=0的一个基础解系,若b1=a1+ta2,b2=a2+ta3,b3=a3+
设a1,a2,a3是齐次线性方程组AX=0的一个基础解系,试证:b1=a1+a2+a3,b2=a1+a2+2a3,b3=
1.向量组A1,A2,A3...An是线性方程组AX=0的一个基础解系,向量组
设a1,a2,a3.an是齐次线性方程组AX=0的一个基础解系,证明:B1=a2+a3...as,B2=a1+a3+.+
设a1,a2,a3...,ar是齐次线性方程组AX=0的一个基础解系,试证:a1+a2,a2,a3,...ar也
证明题:设a1,a2,a3是齐次线性方程组Ax=0的基础解系,
已知a1,a2,a3,a4是线性方程组Ax=0的基础解系,则次方程组的基础解系还可以选用( )
方程组Ax=b,A的秩为3,a1,a2,a3.a1的解向量为a1=(1,0,1,2)求通解2a1+a3=