作业帮 > 数学 > 作业

设函数f(x)=x2+|x-2|-1,x∈R.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 08:36:48
设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.
设函数f(x)=x2+|x-2|-1,x∈R.
(1)f(x)=

x2+x−3 x≥2
x2−x+1,x<2.
若f(x)奇函数,则f(-x)=-f(x)所以f(0)=-f(0),即f(0)=0.
∵f(0)=1≠0,
∴f(x)不是R上的奇函数.
又∵f(1)=1,f(-1)=3,f(1)≠f(-1),
∴f(x)不是偶函数.
故f(x)是非奇非偶的函数.
(2)当x≥2时,f(x)=x2+x-3,为二次函数,对称轴为直线x=−
1
2,
则f(x)为[2,+∞)上的增函数,此时f(x)min=f(2)=3.
当x<2时,f(x)=x2-x+1,为二次函数,对称轴为直线x=
1
2
则f(x)在(-∞,
1
2)上为减函数,在[
1
2,2)上为增函数,
此时f(x)min=f(
1
2)=
3
4.
综上,f(x)min=
3
4.