∫(e^y)siny dy=?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 16:31:30
∫(e^y)siny dy=?
∫e^ysiny dy=?
书上的答案是 (1/2)(e^y)(siny-cosy)+C
实在是不知道怎么得出来的
∫e^ysiny dy=?
书上的答案是 (1/2)(e^y)(siny-cosy)+C
实在是不知道怎么得出来的
∫e^ysiny dy
=-∫e^y d(cosy)
=-[e^y*cosy-∫cosy d(e^y)]
=∫cosy*e^y dy-e^ycosy
=∫e^y d(siny)-e^ycosy
=e^ysiny-∫siny d(e^y)-e^ycosy
=e^y(siny-cosy)-∫e^ysiny dy
所以 2∫e^ysiny dy = e^y(siny-cosy)
∫e^ysiny dy = e^y(siny-cosy)/2 + C
=-∫e^y d(cosy)
=-[e^y*cosy-∫cosy d(e^y)]
=∫cosy*e^y dy-e^ycosy
=∫e^y d(siny)-e^ycosy
=e^ysiny-∫siny d(e^y)-e^ycosy
=e^y(siny-cosy)-∫e^ysiny dy
所以 2∫e^ysiny dy = e^y(siny-cosy)
∫e^ysiny dy = e^y(siny-cosy)/2 + C
∫(e^y)siny dy=?
x*e^y+siny=0 求dy/dx
∫(siny/y)dy
求∫siny/y dy.感激不尽
∫L(e^x siny-2y)dx+(e^x cosy-z)dy, L:上半圆周(x-a)^2+y^2=a^2 , y>
不定积分的问题:∫ e^(-y²/2) siny dy
设siny+e^3x-2x^3y^2=0,求dy/dx
利用格林公式计算曲线积分.∫ e∧x [cosy dx +(y-siny)dy],曲线为y=sinx从(0,0)到(π,
∫(e^x)cosydx+(y-siny)dy,其中L为曲线y=sinx从(0,0)到(pi,0)的一段弧
设由x^2y-e^(2y)=siny确定y是x的函数,求dy/dx
求导 e^x/(e^x +1)dx cosy /siny dy=ln siny
已知方程xy-eˆ2x=siny 确定隐函数y=y(x),求dy/dx