∫(1→+∞)1/x∧4 dx ∫(-∞→+∞)dx/(x∧2+2x+2)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 01:43:27
∫(1→+∞)1/x∧4 dx ∫(-∞→+∞)dx/(x∧2+2x+2)
∫(1->+∞) 1/x^4 dx
= -1/(3x³):(1->+∞)
= (-1/3)[lim(x->+∞) 1/x² - lim(x->1) 1/x²]
= (-1/3)(0-1)
= 1/3
∫(-∞->+∞) dx/(x²+2x+2)
= ∫(-∞->+∞) dx/[(x+1)²+1]
= arctan(x+1):(-∞->+∞)
= lim(x->+∞) arctan(x+1) - lim(x->-∞) arctan(x+1)
= π/2 - (-π/2)
= π
= -1/(3x³):(1->+∞)
= (-1/3)[lim(x->+∞) 1/x² - lim(x->1) 1/x²]
= (-1/3)(0-1)
= 1/3
∫(-∞->+∞) dx/(x²+2x+2)
= ∫(-∞->+∞) dx/[(x+1)²+1]
= arctan(x+1):(-∞->+∞)
= lim(x->+∞) arctan(x+1) - lim(x->-∞) arctan(x+1)
= π/2 - (-π/2)
= π
∫(1→+∞)1/x∧4 dx ∫(-∞→+∞)dx/(x∧2+2x+2)
∫(x∧4/x∧2+1)dx
∫(1/(x∧2+1)) dx=?
∫e∧√(2x+1)dx
x-9/[(根号)x]+3 dx ∫ x+1/[(根号)x] dx ∫ [(3-x^2)]^2 dx
∫((x+2)/4x(x^2-1))dx
高数求积分∫(1+x)/√(1-x∧2)dx
广义积分∫(0~+∞)dx/1+x^2 dx 怎么求?
∫(0→4)1/(x∧2-x-2)dx详细步骤
∫x/(1+2x)(1+x)dx
∫dx/(1+√(1-x^2))=? ∫tan^4(x)dx=?
求∫ (x-1)/ (9-4x^2)dx