作业帮 > 数学 > 作业

(2014•南通模拟)设t∈R,[t]表示不超过t的最大整数.则在平面直角坐标系xOy中,满足[x]2+[y]2=13的

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 08:00:39
(2014•南通模拟)设t∈R,[t]表示不超过t的最大整数.则在平面直角坐标系xOy中,满足[x]2+[y]2=13的点P(x,y)所围成的图形的面积为______.
(2014•南通模拟)设t∈R,[t]表示不超过t的最大整数.则在平面直角坐标系xOy中,满足[x]2+[y]2=13的
由题意可得:方程:[x]2+[y]2=13,
当x,y≥0时,[x],[y]的整数解为(2,3),所以此时x可能取的数值为:2.
所以当|[x]|=2时,2≤x<3,或者-2≤x<-1,|[y]|=3,3≤y<4,或者-3≤y<-2,围成的区域是8个单位正方形,
所以满足[x]2+[y]2=2的点P(x,y)所成的图形面积为8.
故答案为:8.