作业帮 > 数学 > 作业

在角ABC中,角A、B、C对应边分别为a,b,c,试证明下列恒等式;cotA/2+cotB/2+cotC/2=cotA/

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 08:32:42
在角ABC中,角A、B、C对应边分别为a,b,c,试证明下列恒等式;cotA/2+cotB/2+cotC/2=cotA/2*cotB/2*cotC/2
在角ABC中,角A、B、C对应边分别为a,b,c,试证明下列恒等式;cotA/2+cotB/2+cotC/2=cotA/
cotA/2+cotB/2+cotC/2=cotA/2*cotB/2*cotC/2
等价于:tanA/2tanB/2+tabB/2tanC/2+tanC/2tanA/2=1
证明:
tanC/2=tan(180-(A+B))/2
=cot(A/2+B/2)
=1/tan(A/2+B/2)
=(1-tanA/2tanB/2)/(tanA/2+tanB/2)
故:tanC/2*(tanA/2+tanB/2)=1-tanA/2tanB/2
tanA/2tanB/2+tabB/2tanC/2+tanC/2tanA/2=1
故原式成立