已知向量OA=(x,y), OB=(2,0),OC=(2,2) ,若|CA|=根号2,求x,y所满足的方程以及向量OA、
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/14 19:48:25
已知向量OA=(x,y), OB=(2,0),OC=(2,2) ,若|CA|=根号2,求x,y所满足的方程以及向量OA、OB夹角取值范围
(可以只有答案)另一题:如图,在 Rt△AOB中,∠OAB=30°,斜边AB=4,D是AB的中点.现将 Rt△AOB以直角边AO为轴旋转一周得到一个圆锥体,点C为圆锥体底面圆周上的一点,且∠BOC=120°.
(1)求异面直线AO与CD所成角的大小;
(2)若某动点在圆锥体侧面上运动,试求该动点从点C出发运动到点D所经过的最短距离.
(可以只有答案)另一题:如图,在 Rt△AOB中,∠OAB=30°,斜边AB=4,D是AB的中点.现将 Rt△AOB以直角边AO为轴旋转一周得到一个圆锥体,点C为圆锥体底面圆周上的一点,且∠BOC=120°.
(1)求异面直线AO与CD所成角的大小;
(2)若某动点在圆锥体侧面上运动,试求该动点从点C出发运动到点D所经过的最短距离.
(x-1)^2+(y-2)^2=2,A点轨迹为以C(2,2)为圆心、半径是√2的圆.
OA、OB夹角最大最小值即是当OA与上述圆处于相切位置时对应的切线与经X轴夹角.等于OB与X轴夹角加减原点O对A点轨迹圆的半张角;
夹角=∠BOC±arcsin(半径/|OC|)=45°±arcsin(√2/(2√2)=45°±arcsin(1/2) =45°-30°=15°
OA、OB夹角最大最小值即是当OA与上述圆处于相切位置时对应的切线与经X轴夹角.等于OB与X轴夹角加减原点O对A点轨迹圆的半张角;
夹角=∠BOC±arcsin(半径/|OC|)=45°±arcsin(√2/(2√2)=45°±arcsin(1/2) =45°-30°=15°
已知向量OA=(x,y), OB=(2,0),OC=(2,2) ,若|CA|=根号2,求x,y所满足的方程以及向量OA、
已知平面向量OA,OB,OC满足|OA|=|OB|=|OC|=1,OA*OB=0,若OC=xOA+yOB(x ,y∈R
已知平面向量OA,OB,OC满足:OA=OB=OC 向量OA⊥OB,向量OA=xOC+yOB,则x+y取值范围?
已知向量OB=(2,0),向量OC=(2,2),向量CA=(根号2cosa,根号2Ssina),则向量OA与OB的夹
已知向量OA.向量OC满足条件向量OA+向量OB-向量OC=向量0,且【OA】=【OB】=1,【OC】=根号2则三角形A
已知向量OB=(2,0),向量OC=(0,2),向量CA=(√3cosa,√3sina)求向量OA与向量OB的夹角
已知向量OB=(1,1)向量OC=(2,2)向量CA=(根号2cosx,根号2sinx)若f(x)=向量OA×向量OB.
已知点A(6,-4),B(1,2),C(x,y),O为坐标原点,若向量OC=向量OA+M向量OB,求C的轨迹方程
已知向量OB=(2,0),向量OC=(2,2),向量CA=(-1,-3),求向量OA与向量OB夹角
高中数学已知直线x-y+a=0与圆x^2+Y^2=1交与AB两点且向量OA向量OB满足|OA+OB|=|OA-OB|,其
已知ABC是圆x^2+y^2=1上的三点,向量OA·OB=0,若存在M,N使得OC=M*OA+N*OB,求M,N满
已知向量OA=(3,1),OB=(-1,2),OC垂直OB,BC//OA,试求满足条件OD+OA=OC的OD的坐标?