求∫L(x^2-y)dx-(x+sin^2y)dy,L是y=根号下1-x^2以A(-1,0)到B(1,0)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 06:48:05
求∫L(x^2-y)dx-(x+sin^2y)dy,L是y=根号下1-x^2以A(-1,0)到B(1,0)
在圆弧L下补一条线N:y = 0,反向.
∮(L+N) (x² - y)dx - (x + sin²y)dy
= - ∫∫D [ ∂/∂x (- x - sin²y) - ∂/∂y (x² - y) ] dxdy
= - ∫∫D [ - 1 - (- 1) ] dxdy
= 0
∫N (x² - y)dx - (x + sin²y)dy
= ∫(1→- 1) x² dx
= - 2∫(0→1) x² dx
= - 2/3
因此∫L (x² - y)dx - (x + sin²y)dy = 0 - (- 2/3) = 2/3
∮(L+N) (x² - y)dx - (x + sin²y)dy
= - ∫∫D [ ∂/∂x (- x - sin²y) - ∂/∂y (x² - y) ] dxdy
= - ∫∫D [ - 1 - (- 1) ] dxdy
= 0
∫N (x² - y)dx - (x + sin²y)dy
= ∫(1→- 1) x² dx
= - 2∫(0→1) x² dx
= - 2/3
因此∫L (x² - y)dx - (x + sin²y)dy = 0 - (- 2/3) = 2/3
求∫L(x^2-y)dx-(x+sin^2y)dy,L是y=根号下1-x^2以A(-1,0)到B(1,0)
∫L[y^2+sin^2(x+y)]dx-[x^2+cos^2(x+y)]dy,其中L是从点(1,0)沿y=根号下(1-
∫L(x^2+2xy)dx+(x^2+y^4)dy,L是y=sin(π/2)从(0,0)到(1,1)
求曲线积分∫(x^2+y)dx-(x+sin^2y)dy,其中L是圆周y=根号下2x-x^2上由点(0,0)到(2,0)
计算∫L(x+y)dx+(y-x)dy,其中L是y=x^2上从点(0,0)到点(1,1)的一段弧
高数!格林公式!用格林公式计算∫L(1+y)sin x dx+(根号下(2+y方)+x-cos x)dy,(L是积分限,
∫(x²-y﹚dx-(x+cos²y)dy L为圆周y=根号x-x²由(0,0)到(1,0
求dy/dx,y=∫sin(t^2)dt由1/x积到根号x
求∮(x+y)dx-(x-y)dy 其中L为椭圆x^2/a^2+y^2/b^2=1 取逆时针方向 的解法
∫L(x+y)dx+(x-y)dy,L为从(1,1)到(2,3)的直线.
∫(0到1)dx∫(x到根号下x)siny/y dy=?
高数题求解,求∫(x-y)dx-(x+siny)dy,其中L沿y=√(2x-x)从点(0,0)到点(1,1)