作业帮 > 数学 > 作业

求∫L(x^2-y)dx-(x+sin^2y)dy,L是y=根号下1-x^2以A(-1,0)到B(1,0)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 06:48:05
求∫L(x^2-y)dx-(x+sin^2y)dy,L是y=根号下1-x^2以A(-1,0)到B(1,0)
求∫L(x^2-y)dx-(x+sin^2y)dy,L是y=根号下1-x^2以A(-1,0)到B(1,0)
在圆弧L下补一条线N:y = 0,反向.
∮(L+N) (x² - y)dx - (x + sin²y)dy
= - ∫∫D [ ∂/∂x (- x - sin²y) - ∂/∂y (x² - y) ] dxdy
= - ∫∫D [ - 1 - (- 1) ] dxdy
= 0
∫N (x² - y)dx - (x + sin²y)dy
= ∫(1→- 1) x² dx
= - 2∫(0→1) x² dx
= - 2/3
因此∫L (x² - y)dx - (x + sin²y)dy = 0 - (- 2/3) = 2/3