设函数f(x)在点x=a处具有二阶导数,并且f'(a)≠0,求x趋向于a时,1/(f(x)-f(a))-1/((x-a)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 20:05:51
设函数f(x)在点x=a处具有二阶导数,并且f'(a)≠0,求x趋向于a时,1/(f(x)-f(a))-1/((x-a)f'(a))
我的做法是先提出1/f'(a),然后通分得到当x趋向于a时((x-a)f'(a)-f(x)+f(a))/(x-a)(f(x)-f(a)),然后分子分母同时除以(x-a),得到当x趋向于a时(f'(a)-f'(x))/(f(x)-f(a)),然后分子分母再同时除以(x-a),得到-f''(a)/f'(a),因为之前提出了1/f'(a),因此我得到的最后结果是-f''(a)/(f'(a))².可是,为什么答案是-f''(a)/(2f'(a))呢?我哪里出错了?
我的做法是先提出1/f'(a),然后通分得到当x趋向于a时((x-a)f'(a)-f(x)+f(a))/(x-a)(f(x)-f(a)),然后分子分母同时除以(x-a),得到当x趋向于a时(f'(a)-f'(x))/(f(x)-f(a)),然后分子分母再同时除以(x-a),得到-f''(a)/f'(a),因为之前提出了1/f'(a),因此我得到的最后结果是-f''(a)/(f'(a))².可是,为什么答案是-f''(a)/(2f'(a))呢?我哪里出错了?
第一次除以(x-a)时,(f(x)-f(a))/(x-a)的极限不是f'(a)么?
你这种做法其实也是错误的,虽然同除(x-a)会的到一个“像模像样”的结果,但其实整个式子仍是0/0未定式,因此洛必达法则才是更好的方法.
lim((x-a)f'(a)-f(x)+f(a))/[f'(a)(x-a)(f(x)-f(a))]
=lim(f'(a)-f'(x))/[f'(a)(f(x)-f(a)+(x-a)f'(x))]
=lim-f''(x)/[f'(a)(2f'(x)+(x-a)f''(x))]
=-f''(a)/2(f'(a))^2
再问: 同除(x-a)得到的是未定式,可是,亲,计算过程中不可以出现未定式么?为什么这样做错了呢?
再答: 因为那样做得到的下一步就是[f(a)-f(a)]/[f(x)-f(a)],事实上极限的四则运算不能部分使用
你这种做法其实也是错误的,虽然同除(x-a)会的到一个“像模像样”的结果,但其实整个式子仍是0/0未定式,因此洛必达法则才是更好的方法.
lim((x-a)f'(a)-f(x)+f(a))/[f'(a)(x-a)(f(x)-f(a))]
=lim(f'(a)-f'(x))/[f'(a)(f(x)-f(a)+(x-a)f'(x))]
=lim-f''(x)/[f'(a)(2f'(x)+(x-a)f''(x))]
=-f''(a)/2(f'(a))^2
再问: 同除(x-a)得到的是未定式,可是,亲,计算过程中不可以出现未定式么?为什么这样做错了呢?
再答: 因为那样做得到的下一步就是[f(a)-f(a)]/[f(x)-f(a)],事实上极限的四则运算不能部分使用
设函数f(x)在点x=a处具有二阶导数,并且f'(a)≠0,求x趋向于a时,1/(f(x)-f(a))-1/((x-a)
设函数lim 当x趋向于a时 f(x)-f(a)/(x-a)⑵=1/3,则f(x)在x=a处
设f(x)在x=a处具有二阶导数,f’(a)≠0,求(f(x)-f(a))分之一减去((x-a)f’(a))分之一 的极
设函数f(x)在x=a可导且f'(a)不等于0.求当x趋向于0时[f(a+x)/f(a)]的1/x次方的极限
设函数f(x)在闭区间[a,b]上具有二阶导数,且f"(x)>0,证明∫(a,b)f(x)dx>f(
若函数f(x)具有二阶导数,又设f(a)=f(c)=f(b),其中a
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0,(1)写出f(x)带有拉格朗日余项
设函数f(x)在点a的某邻域内二阶可导,且f’(a)≠0,求lim(x→a) [1/ f’(a)(x-a)- 1/ f(
设函数f(x)具有二阶导数,且f(x)二阶倒大于0,证明:f(a+h)+f(a-h)≥2f(a)
设f(x)在点a的某领域内具有二阶连续导数,求
设f(x)在[a,b]上有二阶导数,且f''(x)>0,证明:函数F(x)=[f(x)-f(a)]/(x-a) 在(a,
f(x)在x=a处有二阶导数,求证x趋于0时lim(((f(a+x)-f(a)/x}-f‘(a))/x=1/2f''(a