线性代数 A^2=E(称A为对合矩阵) 求A的特征值
线性代数 A^2=E(称A为对合矩阵) 求A的特征值
线性代数二次型 设A满足A^2-3A+2E=0,其中E为单位矩阵,试求2*(A逆)+3E的特征值
线性代数特征值设n阶方阵A满足A^2-3A+2E=0(E为单位矩阵),求A得特征值
线性代数题设三阶矩阵A的特征值为2,1,-1,B=2A*A-A+E,求|B|=已知四阶矩阵A满足|A+2E|=0,A*(
线性代数 设A为n阶矩阵,|A|=5,A+3E不可逆,求伴随矩阵A*的一个特征值
求线性代数矩阵的值已知3阶矩阵A的特征值为-1,1,2,设B=A^2+2A-E,求(1)矩阵A的行列式及A的秩.(2)矩
求线性代数证明题设矩阵A满足A的平方=E,且A的特征值全为1,证明A=E
求解线性代数 关于特征值的一道题 设三阶矩阵A的特征值为2,4,4,则行列式|E-A^-1|=?
一个线性代数类的题目已知三阶矩阵的特征值为-1,1,2,设B=(A的平方+2A-E),(1)求矩阵A的行列式及A的秩;(
线性代数(相似矩阵)设A∽B,B的特征值为1,-2,-3,①求A-¹的特征值;②求A伴随的特征值.
线性代数证明题:如果存在正整数k使得A^k=0,则称A为幂零矩阵.证明幂零矩阵的特征值为0.
设三阶矩阵A的特征值为1、-1、2,求|A*+3A-2E|.