作业帮 > 数学 > 作业

f(x)在[a,b]上连续,在(a,b)内可导,且f(b)=f(a)=1,证明:存在ε,η∈(a,b),使e^(η-ε)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 20:05:09
f(x)在[a,b]上连续,在(a,b)内可导,且f(b)=f(a)=1,证明:存在ε,η∈(a,b),使e^(η-ε)(f(η)+f'(η)=1
f(x)在[a,b]上连续,在(a,b)内可导,且f(b)=f(a)=1,证明:存在ε,η∈(a,b),使e^(η-ε)
设g(x)=f(x)e^x
利用中值定理,存在η∈(a,b),使得
g'(η) = g(b)-g(a))/(b-a)
即:
e^η(f(η)+f'(η))=(e^b - e^a)/(b-a)
又,对h(x)=e^x 用中值定理,得:
存在ε∈(a,b),使得
e^ε = h'(ε) = h(b)-h(a))/(b-a)=(e^b - e^a)/(b-a)
==>e^η(f(η)+f'(η))= e^ε
即:e^(η-ε)(f(η)+f'(η)=1