f(x)在[a,b]上连续,在(a,b)内可导,且f(b)=f(a)=1,证明:存在ε,η∈(a,b),使e^(η-ε)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 20:05:09
f(x)在[a,b]上连续,在(a,b)内可导,且f(b)=f(a)=1,证明:存在ε,η∈(a,b),使e^(η-ε)(f(η)+f'(η)=1
设g(x)=f(x)e^x
利用中值定理,存在η∈(a,b),使得
g'(η) = g(b)-g(a))/(b-a)
即:
e^η(f(η)+f'(η))=(e^b - e^a)/(b-a)
又,对h(x)=e^x 用中值定理,得:
存在ε∈(a,b),使得
e^ε = h'(ε) = h(b)-h(a))/(b-a)=(e^b - e^a)/(b-a)
==>e^η(f(η)+f'(η))= e^ε
即:e^(η-ε)(f(η)+f'(η)=1
利用中值定理,存在η∈(a,b),使得
g'(η) = g(b)-g(a))/(b-a)
即:
e^η(f(η)+f'(η))=(e^b - e^a)/(b-a)
又,对h(x)=e^x 用中值定理,得:
存在ε∈(a,b),使得
e^ε = h'(ε) = h(b)-h(a))/(b-a)=(e^b - e^a)/(b-a)
==>e^η(f(η)+f'(η))= e^ε
即:e^(η-ε)(f(η)+f'(η)=1
f(x)在[a,b]上连续,在(a,b)内可导,且f(b)=f(a)=1,证明:存在ε,η∈(a,b),使e^(η-ε)
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证存在ξ、η∈(a,b),使得eξ-η[f
设f(x)在[a,b]上连续,证明:至少存在一点ε∈[a,b],使f(ε)=[f(a)+f(b)]/2
设f(x)在[a,b]上连续,在(a,b)内可导且f(a)=f(b)=1.证:存在ζ,η∈(a,b),使e^(η-ζ)[
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f‘(c)+f(c)
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,证明存在c,d属于(a,b)使得e的(d-c
b>a>0,f(x)在[a,b]上连续,在(a,b)内可导,证明,存在n属于(a,b)使得f(a)-f(b)=n(lna
- f(x) 在[a,b]连续 在(a,b)上可导,证明:存在ξ,η∈(a,b),使f'(ξ)=(η^2)f'(η)/a
设函数f(x)在区间[a,b]上连续,且f(a)b.证明存在ξ∈(a,b),使得f(ξ)=ξ
设函数f(x)在(a,b)上连续,在(a,b)内可导,且f(a)=0,证明:至少存在一点n属于(a,b)
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.证明:在(a,b)内至少存在一点c,使f'(
函数f(x)在[a,b]上连续,(a,b)内可导.证明存在一点&属于(a,b)使(bf(b)-af(a))/(b-a)=