作业帮 > 数学 > 作业

在三角形ABC中,角A,B,C的对边,a,b,c,已知B=60,若a=5,向量AC*CB=5求三角形ABC的面积

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 19:09:39
在三角形ABC中,角A,B,C的对边,a,b,c,已知B=60,若a=5,向量AC*CB=5求三角形ABC的面积
please,
在三角形ABC中,角A,B,C的对边,a,b,c,已知B=60,若a=5,向量AC*CB=5求三角形ABC的面积
由向量AC*CB=5得:|AC|*|BC|cos(π-C)=5,其中a=5
所以,|AC|cosC=bcosB=-1
由余弦定理得:c²=a²+b²-2abcosC
即:c²=25+b²-10bcosC=35+b²——①
又,b²=a²+c²-2accosB
即:b²=25+c²-10c*cos60°=25+c²-5c——②
联立①②两式解得:c=12
由正弦定理得:S△ABC=1/2*ac*cosB=1/2*12*5*1/2=15