作业帮 > 数学 > 作业

设函数f(x)是定义在【-1,0)∪(0,1】上的偶函数,当x∈【-1,0)时,f(x)=x^3-ax(a∈R)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 10:57:55
设函数f(x)是定义在【-1,0)∪(0,1】上的偶函数,当x∈【-1,0)时,f(x)=x^3-ax(a∈R)
(1)当x∈(0,1】时,求f(x)的解析式;
(2)若a>3,试判断f(x)在(0,1】上的单调性,并证明你的结论
(3)是否存在a,使得当x(0,1】时,f(x)有最大值1
设函数f(x)是定义在【-1,0)∪(0,1】上的偶函数,当x∈【-1,0)时,f(x)=x^3-ax(a∈R)
1.
f(x)是偶函数,则f(-x)=f(x),
设x∈(0,1】,则-x∈【-1,0),
f(-x)=(-x)^3-a(-x)=-x^3+ax=f(x);
2.导数做:
f(x)'=-3x^2+a,因a>3,且x∈(0,1】,则f(x)'>0,f(x)单调递增;
3.(1)当a