作业帮 > 数学 > 作业

f(0)=0 存在极限lim(x->0)f(x)/x 求f(0)点的导数

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:47:39
f(0)=0 存在极限lim(x->0)f(x)/x 求f(0)点的导数
x无限接近于0
f(0)=0 存在极限lim(x->0)f(x)/x 求f(0)点的导数
f'(0)=lim(x->0)f(x)/x
因为 lim(x->0)[f(x)-f(0)]/(x-0)=lim(x->0)f(x)/x
上述等式右边,由假定知存在,所有左边的极限存在,而左边极限存在,恰恰就是f(x)在点x=0
的导数的定义.
再问: 公式不是limf(△x->0)(x+△x)-f(x)除以△x吗
再答: 看来你没理解导数的定义。 △x=x-x0, 因此 △x->0 等价于 x->x0, f(x0+△x)-f(x0)=f(x)-f(x0) 你没在书上看到 f'(x0)=lim(x->x0)[f(x)-f(x0)]/(x-x0) 这个式子?