f(x)=(1-a^(1/x))/(1+a^(1/x))(a>1),求lim(x→0)f(x)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 09:24:01
f(x)=(1-a^(1/x))/(1+a^(1/x))(a>1),求lim(x→0)f(x)
f(x)在x=0处没有定义,而
lim(x→0^+)f(x)=lim(x→0^+)(a^(-1/x)-1)/(a^(-1/x)+1)=-1
{为何与原式不同}
lim(x→0^-)f(x)=lim(x→0^-)(1-a^(1/x))/(1+a^(1/x))=1
因为lim(x→0^+)f(x)≠lim(x→0^-)f(x),故lim(x→0)f(x)不存在
f(x)在x=0处没有定义,而
lim(x→0^+)f(x)=lim(x→0^+)(a^(-1/x)-1)/(a^(-1/x)+1)=-1
{为何与原式不同}
lim(x→0^-)f(x)=lim(x→0^-)(1-a^(1/x))/(1+a^(1/x))=1
因为lim(x→0^+)f(x)≠lim(x→0^-)f(x),故lim(x→0)f(x)不存在
分子分母同除a^(1/x),原式变为f(x)=(a^x-1)/(a^x+1),
f(x)在x=0时为∞/∞形,所以用洛必达法则,
将分子分母同时求导,即
lim(x→0)f(x)=lim(x→0)(a^x-1)的导数/(a^x+1)的导数=1
f(x)在x=0时为∞/∞形,所以用洛必达法则,
将分子分母同时求导,即
lim(x→0)f(x)=lim(x→0)(a^x-1)的导数/(a^x+1)的导数=1
f(x)=(1-a^(1/x))/(1+a^(1/x))(a>1),求lim(x→0)f(x)
f(x)在x=a处有二阶导数,求证x趋于0时lim(((f(a+x)-f(a)/x}-f‘(a))/x=1/2f''(a
设f(x)在x=a处有二阶导数,且f'(x)≠0,求lim x→a[1/f(x)-f(a) - 1/(x-a)f'(a)
设当x->0,lim((ln(1+f(x)/x))/(a^x-1))=A,(a>0,a不等于1),求当x->0,lim(
设函数f(x)在点a的某邻域内二阶可导,且f’(a)≠0,求lim(x→a) [1/ f’(a)(x-a)- 1/ f(
Lim x趋近a F(x)/a=1 可知F(a)=0 为什么啊
已知f(x)=ln(1+x) 求lim(x→0) f(x)/x
高数极限求导 设函数f(x)在x=a连续,有lim(x→a+) f'(x)/(x-a)=1,lim
请问(x趋于a)lim[f(x)-f(a)]/(x-a)^2=-1,求导数f'(a)
设函数f(x)有二阶连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’
设函数f(x)有二姐连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’
设f(x)在x=a处可导,f(a)>0,求N趋近于正无穷时lim{f(a+1/n)/f(a)}的N次方.