若f“(x)在[0,π]连续,f(0)=2,f(π)=1,求定积分上线π,下线0[f(x)+f"(x)]sinx dx
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 02:15:57
若f“(x)在[0,π]连续,f(0)=2,f(π)=1,求定积分上线π,下线0[f(x)+f"(x)]sinx dx
∫(0~π) f(x) sinx dx = ∫(0~π) f(x) d(-cosx)
= - f(x) * cosx |(0~π) + ∫(0~π) cosx df(x)
= - [(f(π) * -1) - (f(0) * cos(0))] + ∫(0~π) cosx * f'(x) dx
= 3 + ∫(0~π) f'(x) d(sinx)
= 3 + f'(x) * sinx |(0~π) - ∫(0~π) sinx df'(x)
= 3 + 0 - ∫(0~π) sinx * f''(x) dx
==> ∫(0~π) f(x) sinx dx = 3 - ∫(0~π) f''(x) * sinx dx
==> ∫(0~π) [f(x) + f''(x)] sinx dx = 3
= - f(x) * cosx |(0~π) + ∫(0~π) cosx df(x)
= - [(f(π) * -1) - (f(0) * cos(0))] + ∫(0~π) cosx * f'(x) dx
= 3 + ∫(0~π) f'(x) d(sinx)
= 3 + f'(x) * sinx |(0~π) - ∫(0~π) sinx df'(x)
= 3 + 0 - ∫(0~π) sinx * f''(x) dx
==> ∫(0~π) f(x) sinx dx = 3 - ∫(0~π) f''(x) * sinx dx
==> ∫(0~π) [f(x) + f''(x)] sinx dx = 3
若f“(x)在[0,π]连续,f(0)=2,f(π)=1,求定积分上线π,下线0[f(x)+f"(x)]sinx dx
函数f(x)zai [0,1]上连续,证明在区间0到π内,定积分xf(sinx)=定积分π/2f(sinx)
已知f(x)在负无穷到正无穷连续,且f(0)=2,设F(x)=∫f(x)dx从x平方到sinx的定积分,求F‘(0)解
计算定积分I=∫(0→π)f(sinx)/[f(sinx)+f(cosx)]*dx,其中f(x)为连续函数,且f(sin
设曲线y=f(x)在点(1,2)处的斜率为3,且该曲线通过原点,求定积分∫xf``(x)dx(上线1,下线0)
一直f(X)的一个原函数为e的x次方的平方,求 定积分 上线1下线0 xf'(x)dx
求定积分 f上限1,下线0(3^x+根号x)dx
F(x)在(-∞,+∞)内满足f(x)=f(x-π)+sinx,且f(x)=x ,x属于[0,π),求积分上限是3π下线
f(x)为连续偶函数 求证f(x)=定积分(x-2t)f(x)dt也为偶函数,上限为x下线为0
f"(x)在[0,1]上连续,f'(1)=0,f(1)-f(0)=2,∫(0~1)xf"(x)dx=?(定积分)
100分求高数积分题设f(x)在[-π,π]上连续 且f(x)=x/(1+(cosx)^2)+∫ f(x)sinX dx
若f(x)在[0,1]上连续,证明 ∫【上π/2下0】f(sinx)dx= ∫【上π/2下0】f(cosx)dx