100*101/1+101*102/1+…+n(n+1)/1
n是自然数,0≤n≤101,则| n-1|+|n-2|+|n-3|+…+|n-100|的最小值,
2^n/n*(n+1)
(n+1)^n-(n-1)^n=?
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n n)) 当N越于无穷大
(n)(n+1)分之1+(n+1)(n+2)分之1……(n+99)(n+100)分之1 化简
根号(n+1)+n
求极限 lim n[1/(n^2+1)+1/(n^2+2^2)+……+1/(n^n+n^n)] (n趋向于无穷大,n^n
100*101/1+101*102/1+…+n(n+1)/1
证明不等式:(1/n)的n次方+(2/n)的n次方+……+(n/n)的n次方
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
证明n^n-n(n-a)^(n-1)>=n!a.其中n>=a>0