一道泰勒展开高数题f(x)=lnx证明:在x>1时,在f(x)上取任意两点使1<ax<bx,证明a,b连线的斜率减去b点
一道泰勒展开高数题f(x)=lnx证明:在x>1时,在f(x)上取任意两点使1<ax<bx,证明a,b连线的斜率减去b点
已知函数f(x)=-x³+ax²+b,(a,b∈R)若函数图像上任意不同两点连线的斜率小于1,求实数
已知函数f(x)=x^3+ax^2,若f(x)图像上任意两点A(x1,y1),B(x2,y2)的连线的斜率大于-1,求实
设f(x)是定义在[-1,1]上的奇函数,且其图像上任意两点连线的斜率均小于0()证明f(x)在[-1,1]上是减函数
已知f(x)=lnx-ax^2-bx (1)当a=1,b=-1时,证明函数f(x)只有一个零点(2)若f(x)的图像与x
已知a>0,函数f(x)=ax-bx的二次方当b>0时,若对任意x∈R都有f(x)≦1,证明a≦2根号b
已知a>0,函数f(x)=ax-bx的二次方,当b>0时,若对任意x∈R都有f(x)≦1,证明a≦2根号b
设f(x)=ax+b-lnx,在【1,3】上f(x)>=0,求常数a,b使∫(1,3)f(x)dx最小
函数f(x)=lnx在x=1时用泰勒级数展开
1、将x^4/(1-x)展开成x的幂级数2、将f(x)=lnx,x.=2在指定点处展开成泰勒级数.
设f(x)=ax+b-lnx,在[1,3]上f(x)>=0,求常数a,b使∫1~3 f(x)dx最小
设f(x)=ax+b-lnx,在(1,3)上f(x)>=0,求常数a,b使∫(1,3)f(x)dx最小