已知数列{An}满足A1=1,A2=3,A(n+2)=3A(n+1)-2An,求an的通项公式
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 21:41:58
已知数列{An}满足A1=1,A2=3,A(n+2)=3A(n+1)-2An,求an的通项公式
a1=1,a2=3,a(n+2)=3a(n+1)-2an.
法一:待定系数法.
设待定系数s、t,使a(n+2)-sa(n+1)=t(a(n+1)-san).
整理得a(n+2)=(s+t)a(n+1)-stan.
对比原式,得s+t=3,st=2.
解得s=1,t=2或s=2,t=1.
用后一组解,有a(n+2)-2a(n+1)=a(n+1)-2an,a2-2a1=1.
∴数列{a(n+1)-2an}是首项a2-2a1=1,公比q=1的等比数列.
∴a(n+1)-2an=a2-2a1=1,故a(n+1)=2an+1.
则a(n+1)+1=2(an+1),a1+1=2.
∴数列{an+1}是首项a1+1=2,公比q=2的等比数列.
∴an+1=(a1+1)×qⁿ⁻¹=2ⁿ
∴an=2ⁿ-1.
综上,数列{an}的通项公式为an=2ⁿ-1.
法二:数学归纳法.
a1=1,a2=3.
猜想an=2ⁿ-1.
①当n=1、2时,猜想显然成立.
②假设当n=k、k+1时结论成立,则有ak=2^k-1,a(k+1)=2^(k+1)-1.
③当n=k+2时:
a(k+2)=3a(k+1)-2ak
=3×2^(k+1)-3-2×2^k+2
=2×2^(k+1)-1
=2^(k+2)-1.
显然,n=k+2时结论也成立.
综上,由①、②、③得对任意n∈N*,an=2ⁿ-1.
法三:特征方程法.
a(n+2)=3a(n+1)-2an
其特征方程为x^2=3x-2,解得x1=1,x2=2.
从而an=c₁x1ⁿ+c₂x2ⁿ=c₁+c₂×2ⁿ.
代入a1、a2的值,得c1+2c2=1,c1+4c2=3.
解得c1=-1,c2=1,故an=2ⁿ-1.
综上,数列{an}的通项公式为an=2ⁿ-1.
法一:待定系数法.
设待定系数s、t,使a(n+2)-sa(n+1)=t(a(n+1)-san).
整理得a(n+2)=(s+t)a(n+1)-stan.
对比原式,得s+t=3,st=2.
解得s=1,t=2或s=2,t=1.
用后一组解,有a(n+2)-2a(n+1)=a(n+1)-2an,a2-2a1=1.
∴数列{a(n+1)-2an}是首项a2-2a1=1,公比q=1的等比数列.
∴a(n+1)-2an=a2-2a1=1,故a(n+1)=2an+1.
则a(n+1)+1=2(an+1),a1+1=2.
∴数列{an+1}是首项a1+1=2,公比q=2的等比数列.
∴an+1=(a1+1)×qⁿ⁻¹=2ⁿ
∴an=2ⁿ-1.
综上,数列{an}的通项公式为an=2ⁿ-1.
法二:数学归纳法.
a1=1,a2=3.
猜想an=2ⁿ-1.
①当n=1、2时,猜想显然成立.
②假设当n=k、k+1时结论成立,则有ak=2^k-1,a(k+1)=2^(k+1)-1.
③当n=k+2时:
a(k+2)=3a(k+1)-2ak
=3×2^(k+1)-3-2×2^k+2
=2×2^(k+1)-1
=2^(k+2)-1.
显然,n=k+2时结论也成立.
综上,由①、②、③得对任意n∈N*,an=2ⁿ-1.
法三:特征方程法.
a(n+2)=3a(n+1)-2an
其特征方程为x^2=3x-2,解得x1=1,x2=2.
从而an=c₁x1ⁿ+c₂x2ⁿ=c₁+c₂×2ⁿ.
代入a1、a2的值,得c1+2c2=1,c1+4c2=3.
解得c1=-1,c2=1,故an=2ⁿ-1.
综上,数列{an}的通项公式为an=2ⁿ-1.
已知数列{An}满足A1=1,A2=3,A(n+2)=3A(n+1)-2An,求an的通项公式
已知数列{an}满足条件:a1=5,an=a1+a2+...a(n-1) n大于等于2,求数列{an}的通项公式
已知数列{an}满足a1=1,a2=2,a(n+2)=(an+a(n+1))/2,n属于正整数.求{an}的通项公式.
已知数列满足a(n+1)=1/(2-an),a1=a,(1)求a1,a2,a3,a4;(2)猜想数列{an}的通项公式,
已知数列{an}满足a1=1,an=(an-1)/3an-1+1,(n>=2,n属于N*),求数列{an}的通项公式
设数列{an}满足a1+3 a2+3^2 a3+……+3^n-1 an=n/3,a属于N* 求数列{an}的通项
设数列an满足a1+3a2+3^2a3+.+3^n-1an=n/3,n∈N*,求数列an的通项公式
已知数列an满足a1=1,a(n+1)=an/(3an+1) 求数列通项公式
已知数列{an}满足a1=1,an=4a(n-1)/[2a(n-1)+1] (n>=2)求数列{an}的通项公式
数列{{an}中,a1=1,a2=2,3a(n+2)=2a(n+1)+an,求数列{an}的通项公式
数列{an}满足递推式an=3a(n-1)+3^n-1(n>=2),又a1=5,求数列{an}的通项公式
已知数列{an}满足a1=1,an=a1+1/2a2+1/3a3+...+1/n-1an-1(n>1)求数列{an}的通