作业帮 > 数学 > 作业

已知椭圆x²/8+y²/6=1,与圆(x-1)²+y²=1相切的直线l:y=kx

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 15:41:46
已知椭圆x²/8+y²/6=1,与圆(x-1)²+y²=1相切的直线l:y=kx+t交椭圆于M、N两点,
若椭圆上一点C满足OM向量+ON向量=λOC向量,求实数λ的取值范围
已知椭圆x²/8+y²/6=1,与圆(x-1)²+y²=1相切的直线l:y=kx
联立圆与切线方程可得k与t的关系
联立直线与椭圆方程可得M,N的坐标
利用韦达定理,可得OM与ON的坐标表达式(用k,t表示)
这样C的坐标也可以表示出来,即为向量OM与ON所在的直线与椭圆的交点
,从而OM+ON的长度与OC的长度都可以表示出来(用k,t表示)
最后利用之前得到的k与t的关系式,可求出λ的范围
λ=t*2^(1/2)/(4k^2+3)^(1/2),并且t^2+2kt=1
我求出来是λ在0与2之间,可以取到