作业帮 > 综合 > 作业

L¹,L²,L³,L⁴是同一平面内的四条平行直线,且每相邻的两条平行直线间的距

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/12 19:29:01
L¹,L²,L³,L⁴是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h,
正方形ABCD的四个顶点分别在这四条直线上,且正方形ABCD的面积是25.(1)连接EF,证明三角形ABE,三角形FBE,三角形EBF,三角形CDF的面积相等;(2)求h的值.

L¹,L²,L³,L⁴是同一平面内的四条平行直线,且每相邻的两条平行直线间的距
1)∵AD∥BC,BE∥FD,∴BE=FD(夹在平行线间的平行线段相等)、AE=ED、BF=FC,
∴AE=BF、EF∥AB∥DC,∠BFE=∠DEF=Rt,设BE=FD=a
∴Rt△BAE=Rt△EFB=Rt△FED=Rt△DCF=1/2*ah;
2)S正方形ABCD=25,边长AB=b=5,AE=5/2,BE=√(AB^2+AE^2)=√(5^2+2.5^2)=5√5/2,
∵AB*AE=BE*h,h=5*5/2/(5√5/2)=√5,解毕.