高中立体几何证明题设PA、PB、PC两两互相垂直,且PA=3,PB=4,PC=6,求点P到平面ABC的距离
高中立体几何证明题设PA、PB、PC两两互相垂直,且PA=3,PB=4,PC=6,求点P到平面ABC的距离
设pa,pb,pc两两互相垂直,且pa=3,pb=4,pc=6,求点p到平面abc的距离
在四面体p-ABC中,pA,PB,PC两两垂直,设PA,PB,PC=a,求点p到平面ABC的距离
在四面体PABC中,PA,PA,PA两两垂直,设PA=PB=PC=a,求点P到平面ABC的距离
已知P为△ABC外一点,PA、PB、PC、两两垂直,PA=PB=PC=a,求P点到平面ABC的距离
P为三角形ABC外一点,PA PB PC两两垂直,PA=PB=PC=a,求点P到平面ABC的距离
三棱锥P-ABC中,PA,PB,PC两两互相垂直,且PA=1,PB=PC=2,则点P到平面ABC的距离为( )
{急}已知三棱锥P-ABC,且PA,PB两两垂直,PA=a,PB=b,PC=c.求P到平面ABC的距离
三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,且PA=2,PB=3,PC=4.求三棱锥P-ABC的体积
已知P为三角形ABC外一点,PA,PB,PC两两垂直,PA=PB=PC=a,求点P到面ABC的距离
三凌锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,且PA=2,PB=3PC=4
已知P为△ABC所在平面外一点,PA、PB、PC两两垂直,PA=PB=PC=a,求P点到平面ABC的距离