作业帮 > 数学 > 作业

关于拐点,高数设函数f(x)满足关系式f''(x)+[f'(x)]∧2=x,且f'(0)=0,则(0,f(0))是曲线y

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 07:51:40
关于拐点,高数
设函数f(x)满足关系式f''(x)+[f'(x)]∧2=x,且f'(0)=0,则(0,f(0))是曲线y=f(x)拐点吗
关于拐点,高数设函数f(x)满足关系式f''(x)+[f'(x)]∧2=x,且f'(0)=0,则(0,f(0))是曲线y
f''(x)+[f'(x)]²=x (1),
则f''(0)+[f'(0)]²=0,所以 f''(0)=0
又 对(1)式求导,得
f'''(x)+2f'(x)f''(x)=1
从而 f'''(0)=1≠0
所以 (0,f(0))是函数的拐点.
注:二阶导数为零,三阶导数不为零的点,就是函数的拐点.