作业帮 > 数学 > 作业

求极限 (1+e∧(1/x))∧x,x→0+ 答案可能是e,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 22:02:37
求极限 (1+e∧(1/x))∧x,x→0+ 答案可能是e,
求极限 (1+e∧(1/x))∧x,x→0+ 答案可能是e,
x→0+
lim (1+e^(1/x))^x
=lim e^ln (1+e^(1/x))^x
=e^lim ln(1+e^(1/x))^x
考虑
lim ln(1+e^(1/x))^x
=lim xln(1+e^(1/x))
=lim ln(1+e^(1/x)) / (1/x)
换元t=1/x
=lim(t→+∞) ln(1+e^t) / t
该极限为∞/∞型,根据L'Hospital法则
=lim [ln(1+e^t)]' / (t)'
=lim (e^t)/(1+e^t)
=1
故,原极限=e^1=e
有不懂欢迎追问