设f是A到B的函数,g是B到C的函数,若f复合g是双射,证明f为单射,g为满射
设f是A到B的函数,g是B到C的函数,若f复合g是双射,证明f为单射,g为满射
离散证明题假设f和g分别是x到y,y到z的函数,并且g.f是一个满射.如果g是一个单射,证明f是一个满射
定义R上的函数满足f(-x)=1/f(x)>0,又g(x)=f(x)+c(c为常数)在[a,b]上是单调增函数证明g(x
设A,B是两个集合,f:A到B,g:B到A.证明:若gf是A到A的恒等映射,则f是单射,g是满射
设f :A→B,g :B→C是映射,又令h =g°f .证明:如果h是满射,那么g也是满射.
设y=f(x)及g(x)为[a,b]上的有界函数,证明:
复合函数的定义域问题(1)若已知f(x)的定义域为[a,b],则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解
简单函数定义域求法a:若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由不等式a≤g(x)≤b求
设f(x),g(x)为连续函数 x属于[a,b] 证明函数 h(x)=max{f(x),g(x)}和p(x)=min{f
映射证明题:f:A-B g:B-C 已知g(f(a)) 是onto(就是满射) 证明g是满射.
已知函数f(x)的定义域为R,且f(-x)=1/f(x) >0,若g(x)=f(x)+c(c为常数)在区间[a,b]上单
设函数f(x)的定义域为D,值域为B,如果存在函数x=g(x),使得函数y=f(g(t))的值域仍然是B,那么,称函数x