函数的单调性的判断,定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)•f(n),且
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 23:10:30
函数的单调性的判断,
定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1.
(1)试求f(0)的值;
(2)判断f(x)的单调性并证明你的结论;
(1)令m=1,n=0则f(1)=f(1)•f(0)又0<f(1)<1∴f(0)=1
(2)设x<0则-x>0∴0<f(-x)<1而f(x)=f(0)/ f(−x)=1/f(−x)
∴f(x)>1即对任意x∈R有f(x)>0
设x1>x2则 x1-x2>0,∴0<f(x1-x2)<1
于是f(x1) /f(x2)=f(x1−x2)<1∴f(x1)<f(x2)
所以,函数f(x)在R上单调递减
为什么要先证明“对任意x∈R有f(x)>0”,能不能跳过这个步骤,直接去证明函数的单调性?
定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1.
(1)试求f(0)的值;
(2)判断f(x)的单调性并证明你的结论;
(1)令m=1,n=0则f(1)=f(1)•f(0)又0<f(1)<1∴f(0)=1
(2)设x<0则-x>0∴0<f(-x)<1而f(x)=f(0)/ f(−x)=1/f(−x)
∴f(x)>1即对任意x∈R有f(x)>0
设x1>x2则 x1-x2>0,∴0<f(x1-x2)<1
于是f(x1) /f(x2)=f(x1−x2)<1∴f(x1)<f(x2)
所以,函数f(x)在R上单调递减
为什么要先证明“对任意x∈R有f(x)>0”,能不能跳过这个步骤,直接去证明函数的单调性?
f(x1) /f(x2)=f(x1−x2)<1
∴f(x1)<f(x2)
这一步需要全是正数,举个反例
2/-1<1 但2>-1
∴f(x1)<f(x2)
这一步需要全是正数,举个反例
2/-1<1 但2>-1
函数的单调性的判断,定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)•f(n),且
函数单调性,定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)•f(n),
定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)×f(n)
定义在R上的函数f(x)满足:对任意实数m,n总有f(m+n)=f(m)+f(n),且当x大于0时,f(x)大于0
定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)*f(n),且当X>0时,0<f(x)<1
定义域在R上的函数f(x)满足:对任意实数m,n总有f(m+n)=f(m)乘以f(n)
定义在R上的函数 f(x)满足:对任意的实数m,n,总有f(m+n)=f(m)×f(n),且当x>0时,0
已知f(x)是定义在R上的函数对任意实数m n都有f(m)f(n)=f(m+n) 且当x1.
定义在R上的函数f(x)满足:对任意实数m,n总有f(m+n)=f(m)*f(n),且当x>0时,0
定义在R上的非零函数f(x)对于任意实数m,n,总有f(m+n)=f(m)*f(n),且当x>0时,0
1、定义在R上的函数f(x)对任意实数m,n都有f(m+n)=f(m)+f(n)
已知f(x)是定义在R上的单调函数,对任意实数m,n 总有f(m+n)=f(m)·f(n);且x>0时,0