作业帮 > 数学 > 作业

求值域:y=1/(sqr(4-x)-sqr(x-2))

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:16:18
求值域:y=1/(sqr(4-x)-sqr(x-2))
求值域:y=1/(sqr(4-x)-sqr(x-2))
因为4-x 大于等于0 且 x-2 大于等于0
又因为4-x不等于x-2(分母不为0)
得出x 定义域 区间 [2,3)U(3,4]
设A=sqr(4-x)-sqr(x-2)
则A^2= 2-2*sqr[-(x-3)^2+1]
由y=-(x-3)^2+1函数图像得 在定义域允许范围内内A^2有最大值2
顶点x=3无法取到
0