已知定义域为R的函数f(x)满足f(f(x)—x2+x)=f(x)—x2+x
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 04:33:39
已知定义域为R的函数f(x)满足f(f(x)—x2+x)=f(x)—x2+x
设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式
设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式
则f(f(x0)-x0^2+x0)=f(x0)-x0^2+x0,由于
f(x0)=x0,则
f(2x0-x0^2)=2x0-x0^2
设2x0-x0^2=t,实数t使得f(t)=t,由于有且仅有一个实数x0,使得f(x0)=x0
所以t=x0
2x0-x0^2=x0
x0=x0^2
于是x0=0或x0=1
由第一问的结论知,x0=1 {注:由于第一问已经有f(1)=1,如果f(0)=0,x0就不唯一了}
由于f(f(x)-x2+x)=f(x)-x2+x且只有当t=1时满足f(t)=t
那么对于任意的x一定有f(x)-x2+x=1 {注:否则x0就不唯一了}
所以f(x)=x^2-x+1
f(x0)=x0,则
f(2x0-x0^2)=2x0-x0^2
设2x0-x0^2=t,实数t使得f(t)=t,由于有且仅有一个实数x0,使得f(x0)=x0
所以t=x0
2x0-x0^2=x0
x0=x0^2
于是x0=0或x0=1
由第一问的结论知,x0=1 {注:由于第一问已经有f(1)=1,如果f(0)=0,x0就不唯一了}
由于f(f(x)-x2+x)=f(x)-x2+x且只有当t=1时满足f(t)=t
那么对于任意的x一定有f(x)-x2+x=1 {注:否则x0就不唯一了}
所以f(x)=x^2-x+1
已知定义域为R的函数f(x)满足f(f(x)—x2+x)=f(x)—x2+x
已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.
已知定义域为R的函数F(X)满足F(F(X)-X2+X)=F(X)-X2+X
已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x. (I)若f(2)=3,求f(1)
已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x. 设有且仅有一个实数x0,使得f(x0)=
已知函数f(x)的定义域为R,对任意x1,x2都满足f(x1+x2)=f(x1)+f(x2),当x>0时f(x)>0.
已知定义域为r的函数fx满足.f{f(x)-x+x)=f(x)-x+x ①若f(2)=3求f(1)又若f(0)=a,求f
【题目】已知定义域为R的函数f(x)满足f(f(x)-x²+x)=f(x)-x²+x.
已知定义域为R的函数f(x)满足f(f(x)-x²+x)=f(x)-x²+x
已知定义域为R的函数y=f(x)满足f(-x)=-f(x+4),当x>2时,f(x)单调递增,若x1+x2<4且(x1-
函数f(x)的定义域为D={x|x∈R且x≠0﹜且满足对于任意的X1,X2∈D,有f(x1.x2)=f(x1)+f(x2
已知函数f(x)定义域为{x|x≠0,x∈R}},对定义域的任意x1,x2都有f(x1乘x2)=f(x1)+f(x2)且