作业帮 > 数学 > 作业

哈喽!您好,看到您回答有关极限的问题但还是不太懂,如果您有时间的话,希望得到您的解答,谢谢!

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 22:20:23
哈喽!您好,看到您回答有关极限的问题但还是不太懂,如果您有时间的话,希望得到您的解答,谢谢!
无限个无穷小的乘积与和未必是无穷小的证明
谢谢~1
哈喽!您好,看到您回答有关极限的问题但还是不太懂,如果您有时间的话,希望得到您的解答,谢谢!
举两个反例
1,例1:Xn=(3^k)*(1/2^n)当k为定值时xn是一个无穷小量当k=1、2、3、4…自然增大时.π(k从1到无穷大)Xn=(3^k)*(1/2^n)表示无限多个无穷小量的积当n趋向于无穷大时其结果不是无穷小量.
例2,数列
1,1/2,1/3,1/4……
1,2,1/3,1/4……
1,1 ,3^2,1/4……
1,1,1,4^3……
……
第n个数列中,第(n-1)项为n^(n-1),前面的都是1,后面的就是从(n+1)开始的连续自然数的倒数
这无限多个数列的极限都是无穷小(0)
把这无限多个数列乘起来,第一项的积是1,以后每一项的积都是1,其极限也是1.
2,当n趋向于无穷大时,1/n趋向于0.n个这样的无穷小加起来就是n*(1/n)=1
所以无限个无穷小的乘积与和未必是无穷小
再问: 请问*号表示什么?
再答: *号表示乘法 3^2表示3的2次方
再问: 这个。。再麻烦您下 请问这个 Xn=(3^k)*(1/2^n)表示无限多个无穷小量的积 为啥?
再答: 是“π(k从1到无穷大)(3^k)*(1/2^n)”表示无限多个无穷小量的积 因为连乘的记号难打出来,就用括号写了。复制过来时把“Xn=”也复制过来了。不好意思。 π(k从1到无穷大)(3^k)*(1/2^n)”表示 (3^1)*(1/2^n)(3^2)*(1/2^n)(3^3)*(1/2^n)……(3^k)*(1/2^n)……等等无限多个无穷小量的积