作业帮 > 数学 > 作业

已知数列{an}中,a1=3,前n项和Sn=1/2(n+1)(an+1)-1 (Ⅰ)求证:数列{a

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 23:44:31
已知数列{an}中,a1=3,前n项和Sn=1/2(n+1)(an+1)-1 (Ⅰ)求证:数列{a
已知数列{an}中,a1=3,前n项和Sn=1/2(n+1)(an+1)-1
(Ⅰ)求证:数列{an}为等差数列;
(Ⅱ)求数列{an}的通项.
已知数列{an}中,a1=3,前n项和Sn=1/2(n+1)(an+1)-1 (Ⅰ)求证:数列{a
s(n) = (n+1)[a(n)+1]/2 - 1.
s(n+1) = (n+2)[a(n+1)+1]/2 - 1,
a(n+1) = s(n+1)-s(n) = [(n+2)a(n+1)-(n+1)a(n)]/2,
na(n+1) = (n+1)a(n),
a(n+1)/(n+1) = a(n)/n,
{a(n)/n}为首项为a(1)/1 = 3,的常数数列.
a(n)/n = 3,
a(n) = 3n = 3 + 3(n-1),
{a(n)}是首项为3,公差为3的等差数列.
再问: 错了吧,,S(n+1)-Sn错了
再答: 楼主英明。。。 a(n+1) = s(n+1)-s(n) = [(n+2)a(n+1)-(n+1)a(n) + 1]/2, na(n+1) = (n+1)a(n) + 1, a(n+1)/(n+1) = a(n)/n + 1/[n(n+1)] = a(n)/n + 1/n - 1/(n+1), a(n+1)/(n+1) + 1/(n+1) = a(n)/n + 1/n. {a(n)/n + 1/n}为首项为a(1)/1 + 1 = 4,的常数数列。 a(n)/n + 1/n = 4, a(n) = 4n -1 = 4(n-1) + 3 , {a(n)}是首项为3,公差为4的等差数列。
再问: 现在是了
再答: 那,敬请楼主采纳~~多谢!
再问: 其实在那之前我已写好。。不过给个好评!