作业帮 > 数学 > 作业

f(x)定义在R上,对任意x y都有f(x+y)=f(x)+f(y),若f(x)在x=0处连续,证明f(x)对一切x均连

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 14:07:29
f(x)定义在R上,对任意x y都有f(x+y)=f(x)+f(y),若f(x)在x=0处连续,证明f(x)对一切x均连续.
f(x)定义在R上,对任意x y都有f(x+y)=f(x)+f(y),若f(x)在x=0处连续,证明f(x)对一切x均连
f(x+y)=f(x)+f(y)
取x=y=0,得f(0)
而f(x)在x=0处连续,故lim(h->0)f(h)=f(0)=0
故对任意的x,有
lim(h->0)f(x+h)
=lim(h->0) (f(x)+f(h))
=lim(h->0) f(x) + lim(h->0) f(h)
=lim(h->0) f(x)
故f(x)对一切x均连续