作业帮 > 数学 > 作业

设函数f(x)+ax2+bx+k(k>0),在x=0处取到极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/15 20:24:46
设函数f(x)+ax2+bx+k(k>0),在x=0处取到极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0
(1)求a,b的值(2)若函数g(x)=e∧x/f(x),讨论g(x)的单调性
设函数f(x)+ax2+bx+k(k>0),在x=0处取到极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线
1.
f(x)=ax^2+bx+k
f'(x)=2ax+b
f'(0)=b=0
f(x)=ax^2+k
f(1)=a+k
过(1,a+k)的切线斜率k1=f'(1)=2a+b=2a
x+2y+1=0的斜率k2=-1/2
所以k1*k2=(-1/2)(2a)=-a=1
a=-1
所以a=-1,b=0;
2.
g(x)=e^x/f(x)
=e^x/(-x^2+k)
g'(x)=[(-x^2+k)e^x-(-2x)e^x]/(-x^2+k)^2
=(-x^2+2x+k)e^x/(-x^2+k)^2
因e^x/(-x^2+k)^2>0
所以g'(x)的正负与-x^2+2x+k相同,
-x^2+2x+k=-(x-1)^2+k+1
-(x-1)^2+k+1>0时,即1-√(k+1)<x<1+√(k+1)时,g'(x)>0,g(x)单调递增;
-(x-1)^2+k+1<0时,即x>1+√(k+1)或x<1-√(k+1)时,g'(x)<0,g(x)单调递减.