作业帮 > 综合 > 作业

设函数f(x)在R上是可导的偶函数,且满足f(x-1)=-f(x+1).则曲线y=f(x)在点x=2014处的切线的斜率

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/18 22:00:16
设函数f(x)在R上是可导的偶函数,且满足f(x-1)=-f(x+1).则曲线y=f(x)在点x=2014处的切线的斜率为
设函数f(x)在R上是可导的偶函数,且满足f(x-1)=-f(x+1).则曲线y=f(x)在点x=2014处的切线的斜率
f(x-1)=-f(x+1)
用x+1替换x,得到f(x)=-f(x+2)
再用x+2替换x,得到f(x+2)=-f(x+4)
得到f(x)=f(x+4)
得到T=4
故f(2014)=f(2)
且f‘(2)=f’(2014)
f(x)=-f(x+2)=f(-x)
故函数关于(1,0)对称
得到f’(2)=f‘(0)
而函数f(x)在R上是可导的偶函数
故f’(0)=0
故曲线y=f(x)在点x=2014处的切线的斜率为0