1+3+5+7+……+2n-1=
lim(1/n^2+4/n^2+7/n^2+…+3n-1/n^2)
求极限Xn=n/(n^2+1)+n/(n^2+2)+n/(n^2+3)+……+n/(n^2+n),
已知Sn=2+5n+8n^2+…+(3n-1)n^n-1(n∈N*)求Sn
用数学归纳法证明“(n+1)(n+2)…(n+n)=2^n·1·3·5…(2n-1)(n∈N*)”时,从n=k到n=k+
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n n)) 当N越于无穷大
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2
f(n)=1/(n+1)+1/(n+2)+1/(n+3)……+1/2n (n∈N*),f(n+1
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)在线等
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)
数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)
用数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)
证明(1+2/n)^n>5-2/n(n属于N+,n>=3)