设f(x)在[a,b]连续,在(a,b)可导,f'(x)≤0,F(x)=[∫(a→x)f(t)dt]/(x-a),证明在
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/10 17:47:43
设f(x)在[a,b]连续,在(a,b)可导,f'(x)≤0,F(x)=[∫(a→x)f(t)dt]/(x-a),证明在(a,b)有F'(x)≤0
设H(x)为f(x)的一个原函数
则∫(a->x)f(t)dt=H(x)-H(a)
[∫(a->x)f(t)dt]’=H’(x)=f(x)
欲证
F’(x)≤0 ⟺
{[∫(a->x)f(t)dt]/(x-a)]’ ≤0⟺
H’(x)(x-a)-∫(a->x)f(t)dt≤0⟺
H’(x)(x-a) ≤ H(x)-H(a) ⟺
H’(x)≤[ H(x)-H(a)]/(x-a) ⟺
H’(x) ≤ H’(w) (w∈[a,x]) ⟺
即f(x) ≤f(w) (w≤x)
此有f’(x) ≤0知函数单调递减易知
则∫(a->x)f(t)dt=H(x)-H(a)
[∫(a->x)f(t)dt]’=H’(x)=f(x)
欲证
F’(x)≤0 ⟺
{[∫(a->x)f(t)dt]/(x-a)]’ ≤0⟺
H’(x)(x-a)-∫(a->x)f(t)dt≤0⟺
H’(x)(x-a) ≤ H(x)-H(a) ⟺
H’(x)≤[ H(x)-H(a)]/(x-a) ⟺
H’(x) ≤ H’(w) (w∈[a,x]) ⟺
即f(x) ≤f(w) (w≤x)
此有f’(x) ≤0知函数单调递减易知
设f(x)在[a,b]连续,在(a,b)可导,f'(x)≤0,F(x)=[∫(a→x)f(t)dt]/(x-a),证明在
f(x)在[a,b]上连续可导,f'(x)≤0 若F(x)=1/x-a,定积分∫f(t)dt[a,x] 证明在(a,b)
f(x)在[a,b]上连续,在(a,b) 内可导,且 f '(x)≤0,F(x)=1/(x-a)∫(x-a)f(t)dt
设函数f(x)在[A,B]上连续,证明lim(h→0) 1/h*∫(x,a)[f(t+h)-f(t)]dt=f(x)-f
设f(x)在(-无穷,+无穷)内连续,证明(d/dx)∫(0~x)(x-t)f'(t)dt=f(x)-f(a)
设f(x)在[-a,a]上为连续奇函数,则F(x)=∫(0,x)f(t)dt ( )
设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|
函数f(x)>0在[a,b]上连续,令F(x)=∫(0到x)f(t)dt+∫(0到x)1/f(t)dt,证明方程F(x)
设函数f(x)在区间[a,b]上连续,则lim(x->a)∫(a->x)f(t)dt=____,lim(x->a)1/(
『紧急』 设函数f(x)在[a,b]上连续,且f(x)>0,证明:()(x)=§(a,x)f(t)dt+2§(x,b)f
设f(x)在【a,b】上连续,在(a,b)内f''(x)>0,证明:
f(x)在闭区间a,b 上连续 则F(X)=∫a到x (x-t)f(t)dt在开区间a,b内