作业帮 > 数学 > 作业

求证:以三角形三边上的中线可构成三角形,且这个三角形的面积等于原三角形面积的3/4.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 12:31:20
求证:以三角形三边上的中线可构成三角形,且这个三角形的面积等于原三角形面积的3/4.
求证:以三角形三边上的中线可构成三角形,且这个三角形的面积等于原三角形面积的3/4.
证明如下:
记原来三角形为ABC
三边上中线分别为AD BE CF
三中线交与一点记为G
延长AD至M使DM=DG
连接CM
容易得到
CM=BG=2/3 BE
MG=AG=2/3 AD
CG=2/3 CF
则由三中线为线段的三角形面积就是△CMG面积的9/4
而△CMG面积=△CMD+△CDG=△CDG+△BDG=△CBG=1/3 △ABC
即三中线为线段的三角形面积=9/4△CMG=9/4*(1/3 △ABC)=3/4△ABC