作业帮 > 数学 > 作业

过抛物线y2=4x的焦点的直线l与抛物线交于A、B两点,O为坐标原点.求△AOB的重心G的轨迹C的方程.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 08:05:48
过抛物线y2=4x的焦点的直线l与抛物线交于A、B两点,O为坐标原点.求△AOB的重心G的轨迹C的方程.
过抛物线y2=4x的焦点的直线l与抛物线交于A、B两点,O为坐标原点.求△AOB的重心G的轨迹C的方程.
抛物线的焦点坐标为(1,0),当直线l不垂直于x轴时,设方程为y=k(x-1),代入y2=4x,
得k2x2-x(2k2+4)+k2=0.
设l方程与抛物线相交于两点,
∴k≠0.设点A、B的坐标分别为(x1,y1)、(x2,y2),
根据韦达定理,有x1+x2=
2(k2+2)
k2,
从而y1+y2=k(x1+x2-2)=
4
k.
设△AOB的重心为G(x,y),
消去k,得x=
2
3+
4
3(
3
4y)2,
则x=
0+x1+x2
3=
2
3+
4
3k2,y=
0+y1+y2
3=
4
3k,
∴y2=
4
3x-
8
9.
当l垂直于x轴时,A、B的坐标分别为(1,2)和(1,-2),△AOB的重心G(
2
3,0),也适合y2=
4
3x-
8
9,
因此所求轨迹C的方程为y2=
4
3x-
8
9.