如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 18:34:14
如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.
(1)若直线AB解析式为y=-2x+12,直线OC解析式为y=x,
①求点C的坐标;
②求△OAC的面积.
(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
(1)若直线AB解析式为y=-2x+12,直线OC解析式为y=x,
①求点C的坐标;
②求△OAC的面积.
(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
(1)①由题意,
y=−2x+12
y=x.(2分)
解得
x=4
y=4.所以C(4,4)(3分)
②把y=0代入y=-2x+12得,x=6,所以A点坐标为(6,0),(4分)
所以S△OAC=
1
2×6×4=12.(6分)
(2)存在;
由题意,在OC上截取OM=OP,连接MQ,
∵OQ平分∠AOC,
∴∠AOQ=∠COQ,
又OQ=OQ,
∴△POQ≌△MOQ(SAS),(7分)
∴PQ=MQ,
∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以∠AEO=∠CEO,
∴△AEO≌△CEO(ASA),
∴OC=OA=4,
∵△OAC的面积为6,所以AM=12÷4=3,
∴AQ+PQ存在最小值,最小值为3.(9分)
y=−2x+12
y=x.(2分)
解得
x=4
y=4.所以C(4,4)(3分)
②把y=0代入y=-2x+12得,x=6,所以A点坐标为(6,0),(4分)
所以S△OAC=
1
2×6×4=12.(6分)
(2)存在;
由题意,在OC上截取OM=OP,连接MQ,
∵OQ平分∠AOC,
∴∠AOQ=∠COQ,
又OQ=OQ,
∴△POQ≌△MOQ(SAS),(7分)
∴PQ=MQ,
∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以∠AEO=∠CEO,
∴△AEO≌△CEO(ASA),
∴OC=OA=4,
∵△OAC的面积为6,所以AM=12÷4=3,
∴AQ+PQ存在最小值,最小值为3.(9分)
如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.
如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C. 在线等,快,
如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.
如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,
如图,在平面直角坐标系中,直线y=负2+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.
如图,在平面直角坐标系中,直线y=x+1与y轴交于点A,与x轴交于点B,点C和点B关于y轴对称.
如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点B,与反比例函数y=m/x在第一象限的图像交于点C(1,6
如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点B,与反比例函数y=mx在第一象限的图象交于点c(1,6)
如图,在平面直角坐标系中,直线l1:y=x-2交x轴于点A,交y轴于点B,与直线l2:y:=kx-4交于点C,且S△AO
如图,在平面直角坐标系中,直线L1:y=x-2交x轴于点A,交y轴于点B,与直线l2:y=kx-4交于点c,且s△AOC
如图,在平面直角坐标系中,直线AB与y轴和x轴分别交于点A,点B,与反比例函数y=m/x在第一象限的图像交与点C(1,6
如图,在平面直角坐标系中,直线y=-4/3+4与x轴交于点A,与y轴交于点B,