设A的秩为1,且AX=b为有解的2*3型非齐次线性方程组,试证明:存在可逆矩阵B,使AB=b(1,1,1)
设A的秩为1,且AX=b为有解的2*3型非齐次线性方程组,试证明:存在可逆矩阵B,使AB=b(1,1,1)
向量组证明问题设A,B分别为m*r,r*n阶矩阵,且AB=0,求证(1)B的各列向量是齐次线性方程组AX=0的解(2)若
设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵
设A,B均为N阶矩阵,且AB=BA,证明:如果A,B都相似于对角阵,则存在可逆矩阵P使P^-1AP与P^-1BP均为对角
设n元非齐次线性方程组AX=B有解,其中A为(n+1)×n矩阵,则|(A|B)|=
线性代数证明题27.设A是m×n实矩阵,n<m,且线性方程组Ax=b有惟一解.证明ATA是可逆矩阵.证明的是A的转置矩阵
设A,B为2n阶正交矩阵,且|AB|= -1,证明存在非零向量x,使得Ax=Bx
设A B 为n阶矩阵,且A B AB-I 可逆 证明A-B的逆 可逆
设A B为n阶矩阵,且A B AB-I可逆,证明:A-(B的逆)可逆
设A,B为3阶方阵,B的列向量都是线性方程组Ax=β的解向量,其中β=(1,2,3)T.则矩阵(AB)*的秩
设A,B为N阶方阵,E为单位矩阵,a1,a2,.an,为B的N个特征值,且存在可逆矩阵P使B=PAP^(-1)-p^(-
若A,B均为n阶矩阵,且AB=BA,证明:如果A,B都相似于对角矩阵,则存在可逆矩阵C使C^1AC与C^1BC均为对角矩