求证1/(n+1)+1/(n+2)+.+1/(3n+1)>1 [n属于N*]
求证1/(n+1)+1/(n+2)+.+1/(3n+1)>1 [n属于N*]
求证:1+1/2+1/3+...+1/n>In(n+1)+n/2(n+1) (n属于N+)
求证:n的n+1次方大于n+1的n次方(n大于或等于3,n属于N)
设n属于N,n>1,求证logn (n+1)>logn+1 (n+2)
已知 n>1且n属于N* ,求证logn(n+1)>logn+1(n+2)
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
求证1+1/2+1/3+...+1/n>In(n+1) (n属于N+)
当n为正偶数,求证n/(n-1)+n(n-2)/(n-1)(n-3)+...+n(n-2).2/(n-1)(n-3)..
证明(1+2/n)^n>5-2/n(n属于N+,n>=3)
2^n/n*(n+1)
求证:logN(n+1)×logN(n-1)2,n属于N)
求证不等式(3^n-4^n)大于等于4^(n-1)其中n属于正整数