作业帮 > 数学 > 作业

请教一条高数求极限lim lnsin(ax)/lnsin(bx),(a>0,b>0).x→0+

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/15 19:07:27
请教一条高数求极限
lim lnsin(ax)/lnsin(bx),(a>0,b>0).
x→0+
请教一条高数求极限lim lnsin(ax)/lnsin(bx),(a>0,b>0).x→0+
先用洛必达法则,分子分母求导数
原式=lim[a*cos(ax)/sin(ax)]/[b*cos(bx)/sin(bx)]
=lim[a*cos(ax)*sin(bx)]/[b*cos(bx)*sin(ax)]
再利用等价无穷小,在x趋于0时,sin(ax)和ax等价无穷小,sin(bx)和bx等价无穷小
原式=lim[a*cos(ax)*bx]/[b*cos(bx)*ax]
=limcos(ax)/cos(bx)
在x趋于+0时,极限=cos(a*0)/cos(b*0)=1