作业帮 > 数学 > 作业

证明不等式√2∏/4≤(0到1)∫dx/√1-x^4 ≤∏/2 (∏是派)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 13:53:28
证明不等式√2∏/4≤(0到1)∫dx/√1-x^4 ≤∏/2 (∏是派)
证明不等式√2∏/4≤(0到1)∫dx/√1-x^4 ≤∏/2 (∏是派)
本题采用放缩法来证证明:
因为0≤x≤1
所以1/√(1-x^4)≤1/√(1-x²)
于是(0到1)∫dx/√(1-x^4)≤(0到1)∫dx/√(1-x²)=(0到1)arcsinx=π/2
另一方面
因为(x²-1)²≥0
所以x^4-2x²+1≥0
即2-2x²≥1-x^4
即1/√(1-x^4)≥1/√2(1-x²)
于是(0到1)∫dx/√(1-x^4)≥(0到1)∫dx/√2(1-x²)=(0到1)(1/√2)arcsinx=√2π/4
综上所述:√2π4≤(0到1)∫dx/√(1-x^4) ≤π/2